Meta发布“变色龙”混合模态模型,要挑战GPT-4o?
2024-05-19 15:02

Meta发布“变色龙”混合模态模型,要挑战GPT-4o?

本文来自微信公众号:新智元 (ID:AI_era),作者:新智元,原文标题:《Meta首发「变色龙」挑战GPT-4o,34B参数引领多模态革命!10万亿token训练刷新SOTA》,题图来自:视觉中国

文章摘要
Meta发布了挑战GPT-4o的混合模态模型Chameleon,采用了统一的Transformer架构,训练涵盖文本、图像和代码等多模态数据。

• 💡 Chameleon是首个“原生”多模态模型,采用端到端训练方式处理文本、图像和音频数据

• 🌟 Chameleon在纯文本任务中性能与Gemini-Pro相当,在视觉问答和图像标注基准上刷新SOTA

• 🔥 Chameleon采用“早期融合”方法,通过“分词化”对图像进行处理,生成和推理交错的文本和图像序列

GPT-4o的横空出世,再次创立了一个多模态模型发展的新范式!


为什么这么说?


OpenAI将其称为“首个‘原生’多模态”模型,这意味着GPT-4o与以往所有的模型都不尽相同。



传统的多模态基础模型,通常为每种模态采用特定的“编码器”或“解码器”,将不同的模态分离开。然而,这种方法限制了模型有效融合跨模态信息的能力。


官博介绍,GPT-4o是“首个端到端”训练的,跨越文本、视觉和音频的模型,所有的输入和输出,都由单个神经网络处理。


而现在,业界首个敢于挑战GPT-4o的模型现身了!


最近,来自Meta团队的研究人员发布了“混合模态基座模型”——Chameleon(变色龙)


论文地址:https://arxiv.org/pdf/2405.09818


与GPT-4o一样,Chameleon采用了统一的Transformer架构,使用文本、图像和代码的混合模态完成训练。


以类似文本生成的方式,对图像进行离散“分词化”(tokenization),最终生成和推理交错的文本和图像序列。



这种“早期融合”的方法,所有的pipeline从一开始就被映射到一个共同的表示空间,因此模型可以无缝处理文本和图像。


Chameleon生成的多模态内容


与此同时,这样的设计也为模型训练带来了重大的技术挑战。


对此,Meta研究团队引入了一系列架构创新和训练技术。


结果表明,在纯文本任务中,340亿参数Chameleon(用10万亿多模态token训练)的性能和Gemini-Pro相当。


在视觉问答和图像标注基准上,刷新SOTA,性能接近GPT-4V。


不过,不论是GPT-4o,还是Chameleon,都是新一代“原生”端到端的多模态基础模型早期探索。


GTC 2024大会上,老黄描述了迈向AGI最终愿景的重要一步——各种模态互通有无



下一个开源GPT-4o要来?


Chameleon的发布,简直就是对GPT-4o做出的最快的反应。




有网友表示,token进,token出,简直无法去解释。



甚至还有人称,在GPT-4o诞生之后发布的非常扎实的研究,OOS将迎头赶上。



不过,目前Chameleon模型支持生成的模态,主要是图像文本。缺少了GPT-4o中的语音能力。


网友称,然后只需添加另一种模态(音频),扩大训练数据集,“烹饪”一段时间,我们就会得到GPT-4o?



Meta的产品管理总监称,“我非常自豪能够给予这个团队支持。让我们朝着让GPT-4o更接近开源社区的方向迈进一步”。


或许用不了多久,我们就可以得到一个开源版的GPT-4o。


接下来,一起看看Chameleon模型的技术细节。


技术架构


Meta在Chameleon的论文中首先表示:很多新近发布的模型依旧没有将“多模态”贯彻到底。


这些模型虽然采用了端到端的训练方式,但仍然单独对不同模态进行建模,使用分开的编码器或解码器。


如开头所述,这种做法限制了模型跨模态信息的能力,也难以生成包含任意形式信息的、真正的多模态文档。


为了改进这种缺陷,Meta提出了一系列“混合模态”的基座模型Chameleon——能够生成任意文本和图像内容交织在一起的内容。


Chameleon的生成结果,文本和图像交错出现


所谓“混合模态”基座模型,指Chameleon不仅使用了端到端的方式从头开始训练,而且训练时将所有模态的信息交织混合在一起,并使用统一的架构处理。


如何将所有模态的信息混合在同一个模型架构中表示?


答案还是“token”。只要全部表示为token,就可以把所有模态的信息映射到同一个向量空间中,让Transformer无缝处理。


但是,这种做法会带来优化稳定性以及模型扩展性方面的技术挑战。


为了解决这些问题,论文相应地对模型架构进行了创新,并使用了一些训练技巧,包括QK归一化和Zloss等。


同时,论文也提出了将纯文本LLM微调为多模态模型的方法。


1. 图像“分词器”


要将所有模态全部表示为token,首先需要一个强大的分词器。


为此,Chameleon的团队在Meta之前一篇论文的基础上开发了一种新的图像分词器,基于大小为8192的codebook,将规格为512×512的图像编码为1024个离散的token。



文字分词器则基于谷歌开发的sentencepiece开源库,训练了一个同时含有65536个文本token与8192个图像token的BPE分词器。



2. 预训练


为了彻底激发“混合模态”的潜力,训练数据也是将不同模态打散、混合呈现给模型的,既有纯文本、文本-图像对,也有文本、图像交错出现的多模态文档。



纯文本数据囊括了Llama 2和CodeLlama所使用的所有预训练数据,共计2.9万亿个token。


文本-图像对包含了一些公开数据,共计14亿对、1.5万亿个token。


对于文本和图像交错的数据,论文特意强调没有包含来自Meta产品的数据,完全使用公开数据来源,整理出共4000亿个token。


Chameleon的预训练分两个单独的阶段进行,分别占总训练比例的80%和20%。


训练的第一阶段就是让模型以无监督的方式学习以上数据,第二阶段开始时,先将第一阶段得到的权重降低50%,并混合更高质量的数据让模型继续学习。


在模型扩展到超过8B参数和1T token时,训练后期会产生明显的不稳定问题。


由于所有模态共享模型权重,每个模态似乎都有增加norm的倾向,与其他模态“竞争”。


这在训练初期不会产生太大的问题,但随着训练的进行、数据超出bf16的表达范围时,就会有loss发散的现象。



研究人员将其归因于softmax函数所具有的平移不变性,这种现象在单模态模型中也被称为“logit漂移”(logit drift)


因此,论文提出了一些架构调整和优化方法来保证稳定性:


  • QK归一化(query-key normalization):将layer norm应用于注意力模块中的query和key向量,从而直接控制softmax层输入的norm增长;


  • 在注意力层和前馈层之后引入dropout;


  • 在损失函数中使用Zloss正则化。


除了数据来源和架构,论文还大方公开了预训练所用的算力规模。


硬件型号为80GB内存的英伟达A100,7B版本并行使用1024个GPU训练了约86万个GPU小时,34B模型所用的GPU数量则扩大了3倍,GPU小时数超过428万。


作为曾经开源Llama 2的公司,Meta的研究团队确实大方,相比连技术报告都没有的GPT-4o,这篇有数据有干货的论文可谓“仁至义尽”。


全面超越Llama 2


具体的实验评估中,研究人员将其分为人工评估和安全测试,以及基准评估。


1. 基准评估


Chameleon-34B使用了比Llama 2多四倍的token进行训练后,在各种单模态的基准测试中都取得了惊艳的效果。


在纯文本任务生成中,研究人员将预训练(非SFT)模型的纯文本功能与其他领先的纯文本LLM进行比较。


评估内容包括,常识推理、阅读理解、数学问题和世界知识领域,评估结果如下:


常识推理和阅读理解:可以观察到,与Llama 2相比,Chameleon-7B和Chameleon-34B更具竞争力。甚至,34B甚至在5/8的任务上超过了Llama-2 70B,性能与Mixtral-8x7B相当。


数学和世界知识:尽管进行了其他模态的训练,但两个Chameleon模型都表现出很强的数学能力。


在GSM8k上,Chameleon-7B的表现优于相应参数规模的Llama 2模型,性能与Mistral-7B相当。


此外,Chameleon-34B在maj@1(61.4 vs 56.8)和Mixtral-8x7B在maj@32(77.0 vs 75.1)上的表现均优于Llama 2-70B。


同样,在数学运算中,Chameleon-7B的性能超过Llama 2,与Mistral-7B在maj@4上的性能相当,而Chameleon-34B的性能超过Llama 2-70B,接近Mixtral-8x7B在maj@4上的性能(24.7 vs 28.4)。


总体而言,Chameleon的性能全面超过了Llama 2,在某些任务上接近Mistral-7B/8x7B。


在文本到图像任务中,研究人员具体评测了视觉问答、图像标注两项具体任务。


Chameleon在视觉问答和图像标注任务中打败Flamingo和Llava-1.5等模型成为SOTA,在纯文本任务中也和第一梯队的Mixtral 8x7B、Gemini Pro等模型表现相当。



2. 人工评估和安全测试


同时,为了进一步评估模型生成多模态内容的质量,论文也在基准测试之外引入了人类评估实验,发现Chameleon-34B的表现远远超过了Gemini Pro和GPT-4V。


相对于GPT-4V和Gemini Pro,人类评委分别打出了51.6%和60.4的偏好率。


下图展示了,对于一组多样化的、来自人类标注者的prompt,Chameleon与基线模型在理解和生成内容方面的性能对比。



其中的每个问题,都由三个不同的人类标注回答,并将多数票作为最终答案。


为了了解人类标注者的质量,以及问题的设计是否合理,研究人员还检查了不同标注者之间的一致性程度。




表5是对20000个众包提示和445个红队交互进行的安全测试,这会引发模型产生不安全内容。



与Gemini和GPT-4V相比,Chameleon在处理需要交错、混合模态响应的提示时,非常有竞争力。


从示例中可以看到,在完成问答任务时,Chameleon既能理解输入的文本+图像,也能为模型输出内容加上合适的“配图”。




并且,Chameleon生成的图像通常与上下文相关,这样一来,这种交错内容的输出对用户来说,极具吸引力。



贡献团队


论文最后还放上了参与这项研究的贡献者,包括预训练、对齐和安全、推理和评估、所有项目的参与者。


其中,*表示共同一作,†表示关键贡献者,‡表示工作流程负责人,♯表示项目负责人。



参考资料:

https://the-decoder.com/metas-chameleon-ai-model-blends-text-and-images-hinting-at-a-future-gpt-4o-rival/

本内容为作者独立观点,不代表虎嗅立场。未经允许不得转载,授权事宜请联系hezuo@huxiu.com
如对本稿件有异议或投诉,请联系tougao@huxiu.com
正在改变与想要改变世界的人,都在 虎嗅APP
赞赏
关闭赞赏 开启赞赏

支持一下   修改

确定